Mathématiques

Question

Mathématiques Seconde

^= au carré

Développer, réduire et ordonner :

A(x)=(2x-3)(3x+4)
B(x)=(x^+2x+5)(x^-x+3)
C(x)=(2x+3)^
D(x)=(4x-3)^

Factoriser les expressions suivante :

A(x)=2x^+7x
B(x)=(x+1)(2x+3)-(x+1)^
C(x)=4x^-9
D(x)=(2x-5)^-16
E(x)=(3x-1)^-7

Résoudre dans réels les équations :

1)5x-2=2x+7
2)x/2+3=2x-1/3
3)(3x+1)(x-2)(x+3)=0
4)(x+1)^-9=0
5)x^=5
6)2/x=3/x
7)3x-1/x+1=2

1 Réponse

  • Bonsoir,

    Developper :

    A(x) = (2x - 3)(3x + 4)
    A(x) = 6x^2 + 8x - 9x - 12
    A(x) = 6x^2 - x - 12

    B(x) = (x^2 + 2x + 5)(x^2 - x + 3)
    B(x) = x^4 - x^3 + 3x^2 + 2x^3 - 2x^2 + 6x + 5x^2 - 5x + 15
    B(x) = x^4 + x^3 + 6x^2 + x + 15

    C(x) = (2x + 3)^2
    C(x) = 4x^2 = 12x + 9

    D(x) = (4x - 3)^2
    D(x) = 16x^2 - 24x + 9

    Factoriser :

    A(x) = 2x^2 + 7x
    A(x) = x(2x + 7)

    B(x) = (x + 1)(2x + 3) - (x + 1)^2
    B(x) = (x + 1)(2x + 3 - x - 1)
    B(x) = (x + 1)(x + 2)

    C(x) = 4x^2 - 9
    C(x) = (2x)^2 - 3^2
    C(x) = (2x - 3)(2x + 3)

    D(x) = (2x - 5)^2 - 16
    D(x) = (2x - 5 - 4)(2x - 5 + 4)
    D(x) = (2x - 9)(2x - 1)

    E(x) = (3x - 1)^2 - 7
    E(x) = (3x - 1 - V7)(3x - 1 + V7)

    Résoudre :

    1) 5x - 2 = 2x + 7
    5x - 2x = 7 + 2
    3x = 9
    x = 9/3
    x = 3

    2) x/2 + 3 = 2x - 1/3
    2x - x/2 = 3 + 1/3
    4x/2 - x/2 = 9/3 + 1/3
    3x/2 = 10/3
    x = 10/3 * 2/3
    x = 20/9

    3) (3x + 1)(x - 2)(x + 3) = 0

    Pour qu’un produit de facteur soit nul il faut qu’au moins un de ces facteur soit nul :

    3x + 1 = 0
    3x = -1
    x = -1/3

    x - 2 = 0
    x = 2

    x + 3 = 0
    x = -3

    S = {-3;-1/3;2}

    4) (x + 1)^2 - 9 = 0
    (x + 1 - 3)(x + 1 + 3) = 0
    (x - 2)(x + 4) = 0

    x - 2 = 0
    x = 2

    x + 4 = 0
    x = -4

    S = {-4;2}

    5) x^2 = 5
    x^2 - 5 = 0
    (x - V5)(x + V5) = 0

    x - V5 = 0
    x = V5

    x + V5 = 0
    x = -V5

    6) 2/x = 3/x
    2/x - 3/x = 0
    -1/x = 0
    Avec x # 0 pas de solution

    7) (3x - 1)/(x + 1) = 2
    (3x - 1)/(x + 1) - 2 = 0
    (3x - 1 - 2(x + 1))/(x + 1) = 0
    (3x - 1 - 2x - 2)/(x + 1) = 0
    (x - 3)/(x + 1) = 0

    x + 1 # 0
    x # -1

    x - 3 = 0
    x = 3

Autres questions