bonsoir si quelqu'un pourrait m'aider pour le 2e exercice de mon dm j'en serai reconnaissante merci d'avance car j'ai du mal
Mathématiques
didijam
Question
bonsoir si quelqu'un pourrait m'aider pour le 2e exercice de mon dm j'en serai reconnaissante merci d'avance car j'ai du mal
1 Réponse
-
1. Réponse Geijutsu
Bonsoir,
----------------------------------------------------
Rappels de cours :
Soient a et b des nombres réels.
cos²(a)+sin²(a) = 1
cos(a-b) = cos(a)*cos(b)+sin(a)*sin(b)
sin(a-b) = sin(a)*cos(b)-cos(a)*sin(b)
----------------------------------------------------
D'après l'énoncé, cos(7π/12) = (√2-√6)/4
Or cos²(7π/12)+sin²(7π/12) = 1
D'où sin²(7π/12) = 1-cos²(7π/12)
D'où sin²(7π/12) = 1-((√2-√6)/4)² = 1-((√2-√6)²/16) = 1-((2-2√12+6)/16) = 1-((8-4√3)/16) = 1-((2-√3)/4) = (4-2+√3)/4 = (2+√3)/4
D'où sin(7π/12) = √((2+√3)/4) ou -√((2+√3)/4)
Or 7π/12 ∈ ]0;π[, d'où sin(7π/12) > 0
Donc sin(7π/12) = √((2+√3)/4) = (√(2+√3))/2
Ainsi :
cos(π/12) = cos((7π/12)-(π/2)) = cos(7π/12)*cos(π/2)+sin(7π/12)*sin(π/2) = ((√2-√6)/4)*0+sin(7π/12)*1 = sin(7π/12) = (√(2+√3))/2
sin(π/12) = sin((7π/12)-(π/2)) = sin(7π/12)*cos(π/2)-cos(7π/12)*sin(π/2) = sin(7π/12)*0-cos(7π/12)*1 = -cos(7π/12) = -(√2-√6)/4